ON THE PRO-ETALE COHOMOLOGY OF QUOTIENT STACKS OF DRINFELD SPACES

ZECHENG YI

ABSTRACT. LetHp~ ! denote the (n—1)-dimensional Drinfeld space over a p-adic field K. We give an explicit de-
scription of the £-adic and p-adic pro-étale cohomology of quotient stacks [~ 1/ GLn(Ok)] and [HE L/ GLA(K)],
which are moduli stacks of special formal O p-modules. The computation makes use of the isomorphism between
the Lubin-Tate tower and the Drinfeld tower due to Faltings and Scholze-Weinstein, as well as the p-adic pro-étale
cohomology of the Drinfeld spaces computed by Colmez-Dospinescu-Niziot.

As an application, we also compute the continuous group cohomology of GL (Qp) over duals of generalized
Steinberg representations over Q.
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1. INTRODUCTION

Let K be a finite extension of Q, and let C' be the completion of an algebraic closure of K. The cohomol-
ogy of Drinfeld spaces was first studied by Schneider-Stuhler [SS91] for any cohomology theory satisfying
certain axioms. Examples of such cohomology theories include de Rham cohomology and ¢-adic (¢ # p)
étale cohomology.

The (n — 1)-dimensional Drinfeld space 7% admits an action of GL,(K) and carries an interesting
moduli interpretation. Specifically, if we consider the quotient stack [3{x !/ GL,,(O )] associated to J(,*,
we get the moduli stack of isomorphism classes of special formal Op-modules (as defined in [Dri76]) of
height n?; similarly, the quotient stack [}; '/ GL,(K)] gives rise to the moduli stack of height n? special
formal O p-modules up to quasi-isogeny.

In this article, we compute the /-adic and p-adic pro-étale cohomology of these two moduli stacks. For
the ¢-adic case, since the ¢-adic pro-étale cohomology satisfies the axioms listed in [SS91], we have

(11) groét (g{gil’(@f(r)) = Spr(@f)*

for 0 < r < n — 1 where Sp,(Qy)* is the Q,-dual of the generalized Steinberg representation Sp, (Q;) of
GL,,(K). By computing continuous group cohomology of GL,,(0Ok) and GL,,(K) over Sp,.(Q,)*, we get:

Theorem 1 (Theorem 4.4 & Theorem 5.2).
(1) The cohomology group ngoét([ﬂ-f?(_l/ GL,,(Ok)], Q) is isomorphic to Qg when r = 0 or 1, and vanishes
in all other degrees.
(2) The cohomology group H;roét([ﬂ-f’}{l/ GL,(K)], Q) is isomorphic to Qg when r = 0 or 2, isomorphic to
Q2 when r = 1, and vanishes in all other degrees.
1
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Our strategy to show Theorem 1 is fairly straightforward. First we descend (1.1) down to the field
K. The proof then rests on the aforementioned results of group cohomology together with the use of the
Hochschild-Serre spectral sequence for pro-étale cohomology.

As for the p-adic case, the computation is more involved. In [CDN20], Colmez-Dospinescu-Niziot de-
scribed the p-adic pro-étale cohomology of 7, ™' using a short exact sequence

0= Q" HHE )/ kerd = Hyoee (HEH,Qp(r)) — Sp,(Qp)* — 0.

It is then very tempting to mimic what we did in the ¢-adic case. However, although the differential part
Q" H(HE ')/ ker d wouldn't survive Galois descent, it is still difficult to compute the group cohomology
H(GL,(K),Sp,(Q,)*) and to control the spectral sequence converging to H;roét([ﬂ-f?{l / GL,,(K)],Q,).

To salvage this, we use the isomorphism between the Drinfeld tower and the Lubin-Tate tower from
[SW13]. Specifically, let K denote the completion of the maximal unramified extension of K, [SW13, The-
orem E] allows us to trade the action of GL,(Ox) on %" (resp. GL,(K) on 3 ') for the action of the
Morava stabilizer group G,, on the Lubin-Tate space LT, . (resp. GY :=G, xZon P’;{l), and gives us two
isomorphisms of stacks:

96"/ GLu(0k)] 2 [LT,, ¢ /] and - [/ GLa(K)] = [PRT/Gy].

By transferring to the Lubin-Tate side, our problem is reduced to computing the continuous group co-
homology of G,, over the pro-étale cohomology of LT, ;. Let Ag, (21,23, ,72,—1) denote the exterior
algebra over Q, generated by z; in degree i and let Ag, () denote the exterior algebra generated by a single
element y in degree 1. Our main result in the p-adic case is the following:

Theorem 2 (Theorem 4.12 & Theorem 5.4). Suppose K/Q, is a finite extension of degree d.
(1) There is an isomorphism of graded Q,-vector spaces
H;roét([g{nK_l/ GL"(OK)]7 Qp) = AQp (1‘1, L3y x2n—1)®d ® Hc*tb(Gal(F/K)? QP)

(2) There is an isomorphism of graded Q,-vector spaces

proct (M5 / GLi (K], Qp) 2 H o (P ' Qp) ® Ag, (21,23, -+ 220-1) @ Ag, (1),

where
Qp ifx=0
. e L) QE ifx =1
proét(]PK 17@p) = Z f .
Q, if3 < < 2n—1and * is odd
0 otherwise.

Our computations conducted on the Lubin-Tate side also have some applications back to the Drinfeld
side. Using Theorem 2, we show (Theorem 6.5) that there is an isomorphism H’, (GL2(Q,), Sp; (Q,)*) =
H: M (GLy(Q,),Q,) for every @ > 0. Furthermore, Theorem 2 suggests that the cohomology groups of
GL,,(Q,) over the dual Steinberg representation Sp,.(Q,)* is a degree-r shift of that over Q,. Consider the
exterior algebra Ag, (z,y, 3, - ,22,-1) over Q, with degrees of generators given by |z| = |y| = 1 and
|z;| = i. We can then identify H} (GL,(Q,), Q,) with this exterior algebra (cf. Proposition 6.2). Using tech-
niques from [Orl05] for computing Ext-groups between Steinberg representations and also the machinery
of solid representations from [RJRC22] and [RJRC25], we show:

Theorem 3 (Theorem 7.1). There is an isomorphism of graded Q,-vector spaces

H;‘ES(GL’”(QP)’ Sp7((@p)*) = AQp (.13, Y, T3, axQn—l)[_T]

forevery0 <r <n-—1
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Notations. We use the following notations throughout the paper, unless otherwise stated.

We denote by K a finite extension of Q,, with ring of integers O, uniformizer =, and residue field k.
We let W = W (k) be the ring of Witt vectors of k, and let K = W[%] be the completion of the maximal
unramified extension of K. We let C be the completion of an algebraic closure K of K, and the Galois
group Gal(K /K) will be denoted by §x. We use ¢ to denote a prime different from p.

2. TWO PAIRS OF MODULI STACKS

Following [RZ96, Chapter 3] and [Far08, Chapitre II], we recall the definitions of Drinfeld tower and
Lubin-Tate tower at infinite level, their related group actions, and also the moduli interpretation of associ-
ated quotient stacks. We will also state the isomorphism due to Scholze-Weinstein between the two towers
and derive two pairs of isomorphic moduli stacks.

2.1. Moduli stacks arising from the Drinfeld tower. For n > 2, the (n — 1)-dimensional Drinfeld symmet-
ric space over K is defined as
Hp =P\ |J H
He®H

where $ is the set of K-rational hyperplanes inside P, '. The space 3! is a rigid analytic Stein space
and has a natural action of GL,,(K) on it. Let D be the unique (up to isomorphism) division algebra over
K of invariant 1/n, let Op be its ring of integers, and denote by w the uniformizer of D. As defined in
[Dri76], the level-0 Drinfeld moduli space " arises as the rigid fiber of certain deformation space of
special formal O p-modules of dimension n and height n?. Moreover, Drinfeld also proved in [Dri76] that
there is a GL,,(K)-equivariant isomorphism .ZP" = [], 9{?{1. The space .#" admits a tower of finite
étale GL,,(K)-coverings

e MDY — MY — MPT ]_[f]-fnfgl7
z

which is called the Drinfeld tower.
Fix Gy to be a special formal O p-module over k of dimension n and height n?.

Definition 2.1. Let (R, R") be a complete affinoid (K, O )-algebra. The Drinfeld tower at infinite level is a
functor .#Z2" on complete affinoid (K, O )-algebras whose set of (R, RT)-points is the set of quadruples
(G, ¢, p,n) up to isomorphism, where

e ( is a special formal O p-module over RT,
t: W — RT is a ring homomorphism,
p:GoQw, R"/pRT — G ®@p+ RT/pR* is an O p-equivariant quasi-isogeny,
n:0p = T,(G) = ]£1 GJp"] is an isomorphism of O p-modules.

Two quadruples (G, ¢, p,n) and (G’, !/, p’,n’) are isomorphic if there is an isomorphism f : G = G’ trans-
ferring one set of data to the other.

Remark 2.2. Here we have a slight caveat that a complete affinoid algebra (R, R) might not be sheafy, in
which case its adic spectrum is not an adic space in the sense of Huber. However, as discussed in [SW13,
Section 2.1], the category of complete affinoid algebras has the sheafy ones as a full subcategory, and the
functor (R, R™) — Spa(R, R") is fully faithful when restricted to this subcategory. One could also restrict
to pairs (R, R*) where R is perfectoid, which guarantees the sheafiness and leads to the "diamond" version
of the moduli space. See Remark 2.8 for more on this.
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The space .#2" bears an action of GL,,(K) x D*. The group GL,(K) comes from the automorphism
group Aut’(Gy) of Gy in the isogeny category, and g € GL, (K) acts on .ZL2" by sending p to po g~!. An
element d € 0}, acts on .Z2" by sending n to o d~!. Let ¢ denote the quotient map G — G/G[w]. The
action of @ € D* is defined by @ - (G, 1, p,n) = (G/G[w], 1, ¢ o p,n o ). From the space .#2*, quotienting
by O gives .4 and quotienting by D* places us at the level of U{"K_l. Let » € Gal(K/K) be the lift of
Frobenius, then ¢ acts on .Z2" by sending ¢ to ¢ o . In the mean time, ¢ also induces an isomorphism
fo : Go ®w,op RY/pRT = Go @w, RTpR' and a quasi-isogeny p, := po f, : Go @w.0p RT/pRT —
H ® R*/pR*. The map (G,t0 ¢,p,n) — (G,t,p,,n) then defines an isomorphism ¢* . #Z2" = .#2" and
gives the functor .Z2" a Weil descent datum. To help visualize how these spaces in the Drinfeld tower
relate to one another, we have the following diagram:

Dr
M,

\O,é/A

-1
05 xGal(K/K) H H?{
Z

A(k/m

D* xQal(K/K) H Fnt ;
Z

DX

n—1
7 J—Cf(

AR’/K)

n—1
:}CK

Building on the moduli interpretation of .Z2" , we can similarly regard 3> ! as a moduli space. Fur-
thermore, since GL,,(K) acts on 3 ', taking quotients by its subgroups naturally yields some interesting
moduli stacks. Among these, we are particularly interested in the quotient stacks [} '/ GL,(Of)] and
[/ GL,,(K)]. We will explain their moduli interpretation in the following.

We define a functor ¢ from the category of affinoid adic spaces over Spa(K, O ) to the category Grpd
of groupoids by assigning to each affinoid adic space Spa(R, R™) the groupoid ¢t (Spa(R, RT)) where:

e Objects in 4T (Spa(R, R™)) are special formal O p-modules over RT that are quasi-isogenous to the

fixed module Gy over RT /pRT.

e Morphisms in ¢(Spa(R, R")) are isomorphisms between such special formal O p-modules.
Similarly, we define another functor ¥%* from the category of affinoid adic spaces over Spa(K,O) to
Grpd by assigning to each affinoid adic space Spa(R, R™) the groupoid ¥ T (Spa(R, RT)) where:

e Objects in ¥%F (Spa(R, RT)) are special formal O p-modules over Rt which are quasi-isogenous to

Go over RT /pRT.

e Morphisms in ¢ (Spa(R, RT)) are quasi-isogenies between such special formal O p-modules.

We let ¢ be the sheafification of ¥+ and let ¥° be the sheafification of ¢°*, both with respect to the pro-
étale topology. So ¢ and ¥° are functors from the category Adick of adic spaces over Spa(K, O) to the
category Grpd which pro-étale locally on Spa(R, RT) are given by 4T and 4% respectively.

Proposition 2.3. The quotient stacks 7"/ GL,(Ok)] and [Hx' ) GL,,(K)] represent the functors 4 and 4°
respectively.

Dr . . . n—1 .
Proof. From the space .Z.", when we quotient out the action of D*, the resulting space " only parametrizes

triples (G, ¢, p). Using the Weil descent datum on .#2", quotienting by Gal(K/K) further forgets the ho-
momorphism «. Now two pairs (G, p) and (G’,p’) identify the same point in .Z2" if the quasi-isogeny
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popt: Gmodp — G’ mod p lifts to an isomorphism G — G’ over RT. Thus in the stacky quotient
[9{’}(_1/ GL, (Ok)], the data of p is forgotten and the morphisms between the objects are isomorphisms.
When we instead quotient out by the full group GL,(K), we are further allowing morphisms over R*
which are only invertible upon inverting p. Thus morphisms in [J-C;f(_l / GL,,(K)] are quasi-isogenies. ~ [J

2.2. Moduli stacks arising from the Lubin-Tate tower. The Lubin-Tate tower consists of spaces parametriz-
ing formal groups. Similar to Section 2.1, we will first recall the construction of these spaces and then ex-
plain the moduli interpretation of the associated moduli stacks of our interest. For more details on this, see
also [SW13, Section 6.4] and [BSSW24, Section 3].

Fix Hj to be a 1-dimensional formal group over k of height n. The Lubin-Tate space arises as the defor-
mation space of Hy. Over a Noetherian local ring of residue characteristic p, [Tat67, Proposition 1] states
that the functor H — H[p™] gives an equivalence between the category of p-divisible formal groups and
the category of connected p-divisible groups over this ring. To simplify notation, we use the same symbol
H for both a deformation of H, and its associated p-divisible group H [p°].

Definition 2.4. Let (R, R") be a complete affinoid (K, Ok )-algebra. The Lubin-Tate tower at infinite level is
a functor .ZLT on complete affinoid (K, O )-algebras whose set of (R, R*)-points is the set of quadruples
(H,t, p,n) up to isomorphism, where

e H is a 1-dimensional p-divisible formal group over Rt,
t: W — RT is a ring homomorphism,
p:Hy®w, Rt /pR"™ — H ®p+ RT/pR™" is a quasi-isogeny,
n:O% S T,(H) = im H [p"] is an isomorphism of Galois modules.

Two quadruples (H,,p,n) and (H,!, p',n’) are isomorphic if there is an isomorphism f : H = H’ over
R™ transferring one set of data to the other.

Both D* and GL,,(K) act naturally on the space .Z-". An element d € D* acts on the space by sending
pto pod=t. The subgroup O C D* arises as the group of automorphisms of the formal group Hy, and the
group D* is the group of automorphisms of Hy in the isogeny category. An element g € GL,,(O) acts on
the space via sending 7 to 7 o g. To extend the action to GL,,(K), let H be a fixed p-divisible group over R*
and let S be the set of isomorphism classes of pairs (H', ¢) where H' is another p-divisible group over R*
and ¢ : H — H'is a quasi-isogeny over R*. This set S is in bijection with the set of Galois stable lattices
in V,,(H), cf. [Far08, Lemme IL.6.1]. Now for an element g € GL,,(K), n(g - O%) is a Galois stable lattice in
V,(H). Thus it gives a pair (H,, ¢,) € S. Let ¢, . : V,(H) = V,(H,) denote the induced isomorphism on
the rational Tate modules. The action of GL,,(K) is defined via

(2.1) g-[(H,t,p,n)] =[(Hy,t,(pg mod p) o p,¢g«0nog)], g€ GL,(K).

Let LT,, = Spf W[u1, - ,un—1] be the Lubin-Tate deformation space of Hy as defined in [LT66] and let
LT, j denote its generic fiber. We have the following diagram obtained from taking quotients on MET:

%LT
GL,(Ok)

[Irr,
Z
GL, (K) /
Z

LT, %
lGross—Hopkins
n—1

Pi

where the map LT, — IP’?{l is the Gross-Hopkins period map from [HG94].
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As we noted earlier, the group O comes from Auty(Hy). If we treat Hy as a functor on k-algebras and
also take Gal(k/k) into consideration, we get the Morava stabilizer group G,, := 0, x7Z. We use G® := D* xZ
to denote the analogue of G,, in the isogeny category. These groups fit into the following diagram:

0 0
0 0} Gn Z 0
0 DX G2 Z 0

"

O+ N<+—

i

Let ¢ € Gal(k/k) be the Frobenius map, then the action of Gal(k/k) on .ZLT is given by ¢ - (H,1,p,n) =
(H,vop, p,n). Furthermore, ¢ induces an isomorphism f,, : Hy®w,,0, RT/pRT™ = Ho®w,, R /pR*, which
then gives a quasi-isogeny p, := po f, : Hy Qw,0p RT/pRT — H @ RT /pR*. The map (H, 10 ¢,p,n) —
(H,, py,n) then gives an isomorphism ¢* . ZLT =5 LT and equips the functor .ZLT a Weil descent datum.
The moduli stacks we are interested in here are [LT, ; /G,] and [IP’;E(‘l /G?]. To state the moduli interpre-

tation of these two stacks, we first define two functors 7#, 7%+ from the category of affinoid adic spaces
over Spa(K, O ) to Grpd by assigning to Spa(R, R") the following:

e Objects in both 7 (Spa(R, RT)) and 7%+ (Spa(R, RT)) are formal groups H over R which are

quasi-isogenous to Hy over Rt /pR+.

e Morphisms in 7" (Spa(R, R")) are isomorphisms between the formal groups.

e Morphisms in 7% (Spa(R, R")) are quasi-isogenies between the formal groups.
We let 7 be the sheafification of 7 and let 7#° be the sheafification of %", both with respect to the
pro-étale topology. Thus we have two functors

A, #° . Adick — Grpd
such that pro-étale locally they are defined as 7#* and %+ above respectively.

Proposition 2.5. The quotient stacks [LT, . /G,]and [IP’}(_l /G2 represent the functors s and 7 respectively.

Proof. From the space .#LT, quotienting out D* forgets the quasi-isogeny p. Quotienting by GL,, (O )
further forgets the rigidification 7. Using the Weil descent datum of .#~T, quotienting out by Z forgets
the homomorphism ¢. The moduli interpretation of [LT, ; /G,] then follows. As for the stack []P”IE(_1 /G?],
notice that the only difference from the earlier quotient is we are now quotienting .#XT by GL,(K). Let
g € GL,(K) and let (H,, p,n) be a point of .#ZLT. Using [Far08, Lemme I1.6.1] and the action of GL,,(K)
described in (2.1), as n(g-O% ) runs through all Galois stable lattices in V,,(H ), H, also runs through all formal
groups over R which are quasi-isogenous to H. This gives the moduli interpretation of []P”IE;1 /G2 O

2.3. The isomorphism between the two towers. The Drinfeld tower and the Lubin-Tate tower are related
through the following celebrated theorem of Scholze-Weinstein:

Theorem 2.6 ([SW13, Theorem E]). The spaces .#2" and .#%" are isomorphic as perfectoid spaces.

Upon taking quotients of .#Z2" = .#LT by subgroups of GL,,(K) x D* and taking descent into consid-
eration, we get:
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Corollary 2.7. There are isomorphisms of quotient stacks
LT, x /Gnl =[5/ GLu(0k)] and  [PL/Gy] 2 [3(5 "/ GLn (K)].

Based on their moduli interpretation, we will simply refer to the first pair of stacks [LT, ; /G,] and

[H% '/ GL,(Ok)] as the isomorphism stacks; similarly we shall call the two stacks in the second pair as
isogeny stacks.

Remark 2.8. The spaces in the quotient stacks from Corollary 2.7 are the generic fibers of their formal models.
One can also take the "diamond" generic fibers instead and reinterpret Corollary 2.7 as

LTS & /Gn] = [0/ GLA(0k)] and  [P271°/Gh) 2 [H "/ GL,(K)).

Such stacks have analogous moduli interpretations as given earlier, except restricting the source from the
category Adicg to its subcategory of perfectoid spaces over Spa(K, Ok ), cf. [BSSW24, Section 3.7].

3. PRO-ETALE COHOMOLOGY OF SOME PERIOD DOMAINS

Our goal of this section is to review the pro-étale cohomology, both ¢-adic and p-adic, of certain rigid
spaces. After that, we explain how to equip such cohomology groups with a topology using the theory of
condensed mathematics of Clausen-Scholze.

3.1. Results of Colmez-Dospinescu-Niziol. The study of the cohomology of the Drinfeld spaces traces
back to Schneider and Stuhler [SS91], where they give a general description of the cohomology groups for
any cohomology theory satisfying certain axioms. Although the p-adic pro-étale cohomology theory does
not satisfy the axiom of "homotopy invariance" in [SS91], Colmez-Dospinescu-Niziot [CDN20] still man-
age to give a description of Hsroét(ﬂ{g_l, Q,) in terms of differential forms and the generalized Steinberg
representations, which is the key result we aim to highlight here. Along the way, we will also recall the
pro-étale cohomology of some other spaces that already appeared in Section 2.

The pro-étale cohomology of projective spaces can be deduced directly from their étale cohomology,
which is well-understood, see e.g. [Niz21].

Theorem 3.1. Let ¢ be a prime (possibly equal to p) and let r be an integer. When r is even and 0 < r < 2n, we have
T n ~ r
proét(PCa Qf) = @Z (_5)

For all other r, the cohomology group vanishes.

The space LT, j; arises as the generic fiber of the Lubin-Tate space LT,, and is isomorphic to the (n — 1)-

dimensional open unit ball Iﬁ%;i(_l. Let Q" denote the sheaf of differential r-forms and let d : Q" — Q"1
denote the differential map. The cohomology of open unit balls is given as follows.

Theorem 3.2. Let r > 0 be an integer, we have
(1) HY, o (@37 Q¢) = Qg and all higher cohomology groups vanish, for £ # p.
(2) M} oet (B, Qp) = Qp and 7o, (B, Qp(r)) = 0 (B er d for v > 1.

Proof. The (-adic pro-étale cohomology of the open unit ball follows directly from the /-adic pro-étale co-
homology of the closed ball. For the p-adic case, see [CN20, Theorem 3]. O

Before describing the pro-étale cohomology of Drinfeld spaces, we first recall the following class of
GL,, (K)-representations; see also [CDN20, Section 5.2] for more details. Firstly, let A = {1,--- ,n — 1},
which can be identified with the set of simple roots of GL,,(K). Let W be its Weyl group and let B C
GL,, (K) be the upper triangular Borel subgroup. For a subset I C A, let W; C W be the subgroup gener-
ated by permutations (4,7 + 1) for ¢ € I and let P; = BW;B be the associated parabolic subgroup. Then for
any ring A and any subset I C A, the generalized Steinberg representation (associated to I) is defined as

C>(G/Pr, A)
Sp,;(A) =
pr(4) >ieavs C%(G/Progiy, A)
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where C> denotes the set of smooth functions. For r € {0,--- ,n — 1}, we simply write Sp, (A) for the
generalized Steinberg representation associated to the subset {1,--- ,n —1 —r} C A. Notice that when
r = 0, its associated set is simply A and Sp,(A) is the trivial representation over A. The ring A we consider
will always be a topological ring, and this will give both Sp;(A) and its dual Sp;(A4)* a topology. As
discussed in [CDN20, Section 5.2.2], when A = Q,, Sp;(A) is an LF-space and Sp;(A)* is a Fréchet space.

Now for ¢ # p, the following theorem can be directly deduced from [SS91] as the ¢-adic pro-étale coho-
mology theory satisfies the axioms listed there.

Theorem 3.3 (Schneider-Stuhler). Let £ # p be a prime. There is a GL,,(K) % §x-equivariant isomorphism
proee (3G, Que(r)) = Sp,.(Qe)*
for every integer r > 0.
As for the p-adic case, we have the following result of Colmez-Dospinescu—Niziot.
Theorem 3.4 ((CDN20, Theorem 5.13]). There is a strictly exact sequence of GL,,(K) x G x-Fréchet spaces
0= QT (HE )/ Ker d = Hipog (™, @y (r)) = Sp,(Q)° — 0

proét

for all integers r > 0.

3.2. Topology and condensed mathematics. After seeing the various cohomology groups from the previ-
ous section, one might ask: what is the topology on such cohomology groups, or more fundamentally, why
should these cohomology groups possess a natural topology at all? The theory of condensed mathematics
developed by Clausen and Scholze provides a natural way to endow cohomology groups with a topology.
In this section, we briefly review some notions in condensed mathematics (following [CS19]) that we will
need later and outline how a natural topology arises for cohomology groups under consideration.

Let #pr06¢ be the pro-étale site of a point, which is equivalent to the category of profinite sets. A condensed
set/group/ring is a sheaf over #,,,¢ with values in Set / Grp / Ring. We denote the category of condensed
sets by Cond. There is a functor from the category Top of topological spaces to the category Cond given
by

(L) : Top — Cond
T (T:S+ Cont(S,T))

where S is any profinite set and Cont(S, T') is the set of continuous maps from S to 7. We let Cond(Ab) be
the category of condensed abelian groups, which is an abelian category [CS19, Theorem 1.10] and has an
internal Hom-functor denoted by Hom. We also let Solid C Cond(Ab) be the subcategory of solid abelian
groups (see [CS19, Definition 5.1]), and tensor product of objects in Solid will be denoted by ®".

Inside the category of profinite sets, we have the subcategory of extremally disconnected sets. These are
the projective objects in the category #,:04t, and we denote this subcategory by EDis. Given a condensed
ring R, we denote by Mod%™ the category of condensed R-modules. A pre-analytic ring A consists of a
condensed ring A and a functor

EDis — Mod{™

S — A[S]
sending finite disjoint unions to finite products, together with a natural transformation S — A[S]. Now
given a pre-analytic ring A, if for any complex C' : --- — C; — C; — Cy — 0in Ch(Mod%™®) with each C; a

direct sum of objects of the form A[T] for varying T' € EDis, the map RHom 4 (A[S], C) — RHom 4 (A[S], C)
is an isomorphism in the derived category D(Cond(Ab)), then we say A is analytic.

Example 3.5. The primal example of a pre-analytic ring is Zg, whose underlying condensed ring is given
by Zg = 7Z and the associated functor is defined as

EDis — Mod5™¢

§ = lim S; = Zo[S] = lim Z[Si).

K2 (2
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cond

In fact, Zg is also analytic and we have Solid = Modz "™ (see [CS19, Theorem 5.8]).

Example 3.6. For K/Q,, a finite extension, we can give O x an analytic ring structure O i by setting O i o =
Ok and defining Ok g[S] = lim, OS] for S = lim_.S; € EDis. We can also give K an anlytic ring structure
Kp by setting Kp = K and Kp[S] := Ox n[S][2].

P

For the category Mod%"D“d, we may also write it as Mod3™"'! to emphasize solidity. When K is a finite

extension of Q,, we let Mod52"! denote the category of solid K-modules. Objects in Mod;2' are solid
abelian groups which are also K-vector spaces.
We recall the following classes of K-vector spaces from classical functional analysis.

Definitions 3.7. Let V be a topological K-vector space.
(1) We say V is a K-Banach space if V admits a 7-adically complete O x-module V° C V such that
VO®p, K=V and V°/7"V" is discrete for all n € N.
(2) We say V is a K-Fréchet space if V' is locally convex, complete, and its topology can be given via a
countable family of seminorms.

We call an object in Mod$2"" a solid K-Banach/Fréchet space if it arises as V for some K-Banach/Fréchet
space V.

Now for the cohomology groups appeared in Section 3.1, one way to endow them with a topology is by
upgrading the constant sheaf Q, to a sheaf of condensed abelian groups Q, (with the p-adic topology). For
an adic space X, this will also upgrade the pro-étale cohomology group H . (Xc,Qp) into a condensed
abelian group H¢ (X C,proct, Qp). If there exists a topological Q,-vector space V such that

Héond (XC,pYOéta %) = K
in Cond(Ab), the topology of V then offers us a way to topologize H' ..(Xc,Qp).

proét
When Colmez-Dospinescu-Niziot first studied the p-adic (pro-)étale cohomology of Drinfeld spaces, the
theory of condensed mathematics was not fully available yet. A condensed version of their calculations is

contained in [Bos23], which describes the cohomology groups and their topology in a unified manner.

Example 3.8. We give an example of how one can endow a pro-étale cohomology group a natural topology
through the case of H[ ¢, (3¢ ', Q¢(r)) in Theorem 3.3. Following the condensed approach in [Bos23], once
we upgrade the sheaf Q,(r) into a sheaf of condensed abelian groups Q,(r), the isomorphism in Theorem
3.3 becomes

Eona (F proct Qe(r)) = Homg, (Sp, (Qr). Qo).
where Qy is equipped with the ¢-adic topology and the topology of Sp,.(Q,) is induced by that of Q,. One
can then show that

I—Ioim(@g (Spr (Qf)v @) = Homcts(spr (@5)7 Qé)
solid

in the category Modg),"", where Hom.s(Sp,.(Q¢), Q¢) is equipped with the weak topology. The topology of
HT (iH’C‘*l, Q¢(r)) is then given by that of Homs(Sp, (Q¢), Q¢), which is a Q,-Fréchet space.

proét

Using the condensed formalism, we now elaborate on the Hochschild-Serre spectral sequence for pro-
étale cohomology. Let G be a profinite group, X a rigid analytic space over K, and Y — X a pro-étale
G-torsor. The pro-étale cohomology of X can be computed via the simplicial cover

...3y><Xy:;y

where the (n+1)-fold product (Y/X)"*! is isomorphic to Y x G". By [CGN23, Lemma 4.4] (see also [Bos23,
Proposition 4.12]), we have a quasi-isomorphism in D(Solid)

chond((y X Gn)proéta%) ~ R@(ZD [Gn]’ chond (Yproéta%))-
This gives us a Hochschild-Serre spectral sequence

E;’J = Héond (G, Hgond (Yproét ) %)) = H:;:’)_Ifd (Xproéta @)



10 ZECHENG YI

or equivalently, if we remember that the cohomology groups have a topology,
E;’j = cts(G Hrj)roet(y7 QP)) = HIZ)jojet(X’ @P)

Such a spectral sequence allows us to compute the cohomology of a rigid analytic variety X over K using
the §x-torsor X¢ — X and also the cohomology of a quotient stack [X/G] using the G-torsor X — [X/G].

In the rest of the paper, we will not emphasize the use of condensed formalism to prevent overloading the
notation with too many "underlines". Instead, we will simply state what is the topology of the cohomology
groups under consideration, and the reader should keep in mind that the topology comes from condensing
the relevant objects.

4. COHOMOLOGY OF THE ISOMORPHISM STACKS
In this section, we compute the pro-étale cohomology of the isomorphism stack [/ GL,, (0 x)].
4.1. f-adic case. First recall the Galois cohomology of Gk over Q;, which can be summarized as follows.

Lemma 4.1. For j € Z, let Q,(j) be the j-th Tate twist of Qg. We have

0 o Qo =0
Hes(S1c, Q) = {O otherwise
1 o~ ) Qe ifi=0,1
Hees(S1c, Q) = {0 otherwise
Q¢ ifj=1

cts(9K7Q5< )) {

0  otherwise
and higher cohomology groups vanish for all j.

Proof. Since Gy acts on Q¢(j) through the j-th power /-adic cyclotomic character, we see that H Y is nonzero

only when j = 0. By local Tate duality, H,.(Sx,Q¢(j)) and H2.*(Sx,Q¢(1—j)) are dual to each other,which
gives the description of H=. 2 Using the local Euler-Poincaré characteristic formula [NSW08, Corollary 7.3.8],

we have Z?ZO(—l)i dimg, H(Sx,Q¢(j)) = 0 for any fixed j, and this gives the description of H'. Finally,
Hi (Sk,Q(j)) vanishes for all i > 3 and all j as the cohomological degree of G is 2. O

Now we compute the /-adic pro-étale cohomology of Drinfeld spaces over K through Galois descent.
Proposition 4.2. There are GL,,( K )-equivariant isomorphisms

Qe ifr=0,1

H’ .
0 otherwise.

Proet(j{’r;{il#@f) = {

Proof. We use the Hochschild-Serre spectral sequence to carry out Galois descent from the geometric co-
homology Hproct(ﬂ-(g_l, Q) to the arithmetic cohomology Hgmét(ﬂ-f?(_l, Q¢), where the Es-page is given

by

E;"j - cts proet (j{n 17 Qé)) H;)jojet (J{nKi17 @f)
By Theorem 3.3, H;roet(ﬂ-fgfﬂ@g) & Spj((@g) (—7) where G acts through the Tate twist. So we have
Ey? = H:(Sx,Qu(—j)) ® Sp,(Q¢)*, which is isomorphic to Sp;(Q,)* if j = 0 and i = 0,1 and is 0 for all

other i,j by Lemma 4.1. Thus the spectral sequence degenerates on the F>-page and the claim follows. O

To compute the ¢-adic pro-étale cohomology of the stack [H; '/ GL, (O )], we first compute the contin-
uous group cohomology of GL,, (O k) over Q.

Lemma 4.3. Let Q; be the trivial 1-dimensional GL,, (O g )-representation equipped with the ¢-adic topology. Then
Qe ifi=0

0  otherwise.

cts(GL ( )7@@) = {
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Proof. Let P C GL,(Ok) be a pro-p subgroup of finite index m. Since ¢ # p, the ¢-cohomological di-
mension of P is 0 [NSWO08, Corollary 3.3.7]. Thus we have H} (P,Z/{"Z) = 0 for i,7 > 0. This implies
the system {H(y (P, Z/("Z)}, is Mittag-Leffler for all i > 0. Thus we get R'lim H! NP, Z/{"Z) = 0 and
Hi (P, Zy) = Wm H Ls(PZ)0°Z) = 0 for i > 0. Using the f-cohomological dimension of P again, we also

have H!,,(P,Q;/Z¢) = 0 for i > 0. Together, such vanishing results imply H¢ (P, Q) = 0 for i > 0.

Now let corgL"(oK) and resgL"(oK) denote the corestriction and restriction maps on group cohomology

and also let [m] denote the multiplication-by-m map. Using the vanishing of H’ (P, Q,), we get

(]| 115, (G (01000 = cOrp O oresE 0% =0 fori > 0.
As m is invertible in Q;, we get Hi (GL,(0k),Qp) = 0 fori > 0. 0

Theorem 4.4. There are isomorphisms

Qy lf?“ZO,l

o :H:nfl Ln O , >~
proct([ K /G ( K)} QZ) {O Othe?’u]is&

Proof. We compute the pro-étale cohomology of the stack using the spectral sequence

Ey? = Hiyo(GLo(0x), Hp oo (351 Q0)) = HYJ0 (I35 / GLa(Ox)], Qo)
By Proposition 4.2 and Lemma 4.3, we get E5? 2 Q, when j = 0,1 and i = 0 and vanishes everywhere else.
This finishes the computation. O

4.2. p-adic case. As one might have anticipated, the steps used in the /-adic case do not translate to the
p-adic case. Specifically, as we will see later in Proposition 4.11, while the differential part appeared in
Theorem 3.4 does not survive the Galois descent from C' to K, the Galois cohomology of G over Q,(j) is
more intricate than over Q,(j), making duals of nontrivial Steinberg representations appear in cohomology
of Drinfeld spaces after descent. The challenge then comes from computing the group cohomology of
GL,,(Ok) over representations Sp,.(Q,)*.

To proceed with our computation of p-adic pro-étale cohomology of [J{;‘(_l / GL,,(Ok)], we will pass to
the Lubin-Tate side and compute the p-adic pro-étale cohomology of the stack [LT, ; /Gy] instead. As
implied by Corollary 2.7, cohomology groups of these two quotient stacks are identical.

We again start by recalling Galois cohomology of G over Tate twists of Q.

Lemma 4.5. Let d be the degree of K over Qy,. Then for j € Z, we have
Qp lf] =0

0 otherwise

{Qg+1 ifj=01

Qd otherwise

Heo (S, Qp(5) = {

1%

H(}ts(gKa Qp(]))

1%

H2, (S5, Qu(5)) {Q” fi=1

0  otherwise
and higher cohomology groups vanish for all j.

Proof. Same as in Lemma 4.1, H° can be computed directly and local Tate duality gives the description of
H?. For all fixed j, the local Euler-Poincaré characteristic formula [NSW08, Corollary 7.3.8] now implies
7 o(—1)idimg, Hi(Sk,Qp(j)) = —[K : Q,], which gives the description of H'. O

As for Galois cohomology over Tate twists of C', we have the following theorem of Tate.
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Theorem 4.6 ([Tat67]). Let K be a finite extension of Q, and let C(j) be the 1-dimensional G i -representation over
C where G acts through the j-th power cyclotomic character. Then

K ifj=0andi=0,1

0  otherwise.

On the Lubin-Tate side, since we are quotienting LT, - by the Morava stabilizer group G,, = 0}, x Z,

we evidently need to compute the continuous group cohomology of O}, over Q,. Let Dy be the division
algebra of invariant 1/n over Q,,. The following result follows from Lazard’s comparison theorem [Laz65,
Théoréme V.2.4.10] between continuous cohomology and Lie algebra cohomology for Q,-analytic groups.

Lemma 4.7 ([BSSW25, Proposition 3.8.1]). Let G be either GL,,(Z,) or OEO with the trivial action on Q,. Then
H:ts(G’ QP) = Hfic(g[n@pa @p) = A'Qp (xlv XT3, - ;xZn—l)

as graded Qy,-algebras where |x;| = i in the exterior algebra on the right.

In Lemma 4.8 and Proposition 4.9 below, we generalize Lazard’s result from Q,-analytic groups to K-
analytic groups for finite extensions X /Q,. Our strategy is motivated by the proof of [HKN11, Lemma 4.1.1].

Lemma 4.8. Let K be a finite extension of Q, of degree d and let GL,, be the general linear algebraic group defined
over K, then

(Resk /g, GLn)% = (GL, )
as group schemes over K.
Proof. Since [K : Q,] = d, there are exactly d different embeddings of K into K over Q,. Denoteby ¥ = {o;}
the set of embeddings of K into K. Then we have K ®q, K =[], v K.

Now we proceed by comparing the functor of points associated with the two group schemes in question.
Let X be a scheme over K, then for each embedding o; : K — K, we have a corresponding map f; : K —
K ®g, K =[], 5 K onto the copy of K associated with o;. This induces a map

fi - Homg(X, GLnf) — Homz(X X3 Spec (K ®q, K), GLnf)
where
Homz(X xz Spec (K ®q, K), GL, %) = Homg (X x Spec K,GLy)
= Homg, (X, Resx/q, GLn)
= HOHI?(X, (ReSK/Qp GLn)f)
At the same time, the projection s; : [], .y, K — K mapping the copy of K corresponding to o; identically
to K gives a section of f;. Thus we also get a map
s; + Homgz (X, (Resk/q, GLy)%) — Homz(X,GL, %)
such that s; o f; = id. This implies that GL,, % is a direct summand of (Resk g, GLy)%. As this is true for
all o;, we conclude that (Resg g, GLn)g% = (GL,, 7). O

Proposition 4.9. Suppose K/Q, is a finite extension of degree d and D is a division algebra over K of invariant
1/n. Let G be either GL,,(O ) or OF with a trivial action on Q,. Then we have

H:ts(Ga @p) = AQp (xlv T a$2n—1)®d
as graded Qy,-algebras where |x;| = i in the exterior algebra on the right.

Proof. We first consider the case of G = GL,,(Ok ), which can be viewed as a Q,-analytic group via restric-
tion of scalars. The Lie algebra of G is then given by Resk /g, gl,, K, which we denote by g. By Lemma 4.8,

we have g ®g, Q, = (g1,Q,)? as Lie algebras over Q,. This gives
(41) HEie(g & @pa@p) = Hfjie((g[n@p)da@p) = A@p (Ila T3, 7x2n—1)®d
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where the second isomorphism follows from Lemma 4.7 and the product formula for Lie algebra cohomol-
ogy. In the meantime, base-change gives us an isomorphism

(42) HEie(Q?Q;D) ®@p = HEie(g ®@p7@p)'

Thus we have Hf;.(g,Qp) ® @p = Ag (w1,23,++ ,T2,_1)®% and it suffices to show the latter description

descends to Q.

We claim that the base-change isomorphism (4.2) preserves primitive elements. Recall from [Kos50, § 10]
that given a Lie algebra a over a field F, its Lie algebra cohomology carries a coproduct A : Hf, (a, F) —
H{.(a,F) ® Hf;,(a, F) and the primitive elements in Hf, (a, F') are those such that A(z) =z ® 1+ 1 ® .
The map A comes from the diagonal map D : a — a x a of Lie algebras. As the diagonal map is compatible
with base-change, we see the coproduct A commutes with base-change, hence the claim.

In the graded algebra Ag (1,3, , Zon—1)®9, the group of automorphisms which preserve primitive
elements is given by [, (1,3, 2n—1} GLd(@p). Using the claim above, to obtain the descent from @p to Q,,
it is enough to show H'(Sg,, GL4(Q,)) is trivial. As Gg, is profinite, any continuous 1-cocycle v : g, —

GL4(Q,) has finite image. Thus the image of 7 is contained in GLg(L) for some finite Galois extension
L/Q,, and v factors through the finite Galois group Gal(L/Q,). Then using non-abelian Hilbert 90 ([Ser02,
§III.1 Lemma 1]), we get

(4.3) H'(Sg,,GL4(Q,)) = ling H'(Gal(L/Q,), GLq4(L)) = 0.
L /Q, finite Galois

This implies Hf;.(9,Qp) = Ag, (z1,23,- -, T2,_1)®%, which proves the statement for GL,, (O ).
When G = 0OF, the Lie algebra of G and the Lie algebra of GL,(Ox) are isomorphic over Q,. Thus by
(4.1) and (4.3), the continuous group cohomology of O}, over Q,, is the same as that of GL,,(O ). O

We will need the following projection formula in our later computation.

Lemma 4.10. Let G be a profinite group and M, N € Modi’-?l[ig]. If the action of G on N is trivial and N is a solid
K-Fréchet space, there is an isomorphism

H*(G,M & N) = H*(G,M) % N.
Specifically, if M, N are K-Fréchet spaces and the action of G on N is trivial, then we have an isomorphism
H: (G, M&®gN) = H: (G, M)&N.
Proof. Consider M, N as objects in D(Modi?l[ig]) and let RT'(G, —) be the derived functor of (—)% : Modi?l[ig] —
Mod32. Since the action of G on N is trivial, we have an isomorphism
(4.4) RI(G,M @I N) =~ RT(G, M) T N

in the category D(Mod32'!) where @4 is the derived tensor product in D(Mod$¢"™®). Because N is a K-
Fréchet space, it is flat for the tensor product @ by [Bos23, Corollary A.65]. Therefore, we have M@%- N =
M @% Nin D(Modi?l[ig]) and the cohomology of the left-hand side in (4.4) calculates H*(G, M ®@% N). The
cohomology of the right-hand side in (4.4) admits a spectral sequence

BT = HP(H'(RT(G, W) @ N) = HPT(RL(G, M) @7 N).

Again as N is flat, we have H?(RT(G,M)) ®%F N = HI(RI'(G,M)) @7 N. Thus the cohomology of the
right-hand side in (4.4) calculates H*(G, M) @5 N and the first claimed isomorphism of cohomology rings
follows.

The second assertion follows directly from the first one together with the isomorphism between V& W

and V ®% W in the category Mod52"! for K-Fréchet spaces V, W, cf. [Bos23, Proposition A.68]. g

While our computation will be through the Lubin-Tate side, we nevertheless give a description of the
p-adic pro-étale cohomology of Drinfeld spaces over K as an interlude.
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Proposition 4.11. Suppose K is a finite extension of Q, of degree d. There are GL,, (K )-equivariant isomorphisms
Qp ifr=0
Hloer (3037, Qp) = { QI+ ifr—1
Sp,1(Qp)* @ Qp ifr>2
Proof. By Theorem 3.4, we have a short exact sequence
(4.5) 0 — QNI ker dDKO(=) = H o (35, Qp) = Sp;(Qp)" (=) = 0

for j > 0. Notice that when j = 0, the differential part vanishes and H}), (HE',Qp) is simply Q,. Using
Lemma 4.5, we have

Q, ifi=0
Héts(gKa proct(g_{n 17Qp)) = Qg+1 ifi=1
0 if i > 2.

When j > 1, the Galois cohomology of (4.5) gives a long exact sequence

= He (Sx,Sp;(Qp)" (=) = Hig(Sr, @710/ ker d @ C(—5))
- Héts(9K7 proet(j{n 17@?)) - Hét:’(gK) Spj(Qp)*(_j)) —
Since the action of G on Q=1 (1) / ker d @ x C(—) is through the Tate twist, we have

CtS(gK’Q] 1(:}(“ 1)/kerd®KC( )) cts(9K7 ( J))®KQJ 1(:}6?( 1)/kerd

by Lemma 4.10, and Theorem 4.6 further implies that all such cohomology groups vanish. Since the Galois
action on Sp,;(Q,)*(—7) is also through the Tate twist, using Lemma 4.5, we get

Sp;(Qp)*®@Qd ifi=1

0 otherwise.

Cts(gK’ proet<g-(n 1?@17)) {

By applying these computations of Galois cohomology groups to the spectral sequence for Galois descent,
we obtain the claimed isomorphisms. O

Now we come back to the Lubin-Tate side and finish our computation of 1} . ([LT,, 5 /Gn], Qp).

Theorem 4.12. Let K be a finite extension of Q, of degree d. There is an zsomorphzsm of graded Q,-algebras
H;roet([LTn’f( /Gn]7 Qp) = A@p ((El, T3y 7‘,172774*1) cts(gKﬂ QP)

where the degree of x; is i in the exterior algebra on the right-hand side.

Proof. The generic fiber LT, . of the Lubin-Tate space is isomorphic to the rigid analytic (n—1)-dimensional
open ball Iﬁ%’}(_l. However, doing Galois descent on the pro-étale cohomology of Iﬁ%g_l directly from C to
K can be difficult. Instead, we will stitch together the quotient by Gal(K/K) and the quotient by the

Morava stabilizer group G,,. Over I@g_l, we have actions of both §x and G,,. Since both groups surject
onto Gal(K/K) 2 7, we construct a group H as their equalizer so H fits into the diagram

Gn I Gal(K/K)

where ker(f1) = 03, ker(f2) = Gal(K/ K), and we have a short exact sequence
(4.6) 0— 05— H— Gk —0.

The construction of H allows us to study the actions of §x and G,, together, and it identifies the pro-étale
cohomology of [LT,, ;. /G,] with that of B, */H].
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We now compute the continuous group cohomology of H over H] . (I?I%’é*l, Qp) for j > 0 using (4.6)
and the associated Hochschild-Serre spectral sequence (see [BSSW25, Section 3.3] for a justification of the
Hochschild-Serre spectral sequence in the setting of continuous cohomology). When j = 0, we have
H, ot (I@’éﬁl, Qp) = Qp by Theorem 3.2. Then Lemma 4.5 and Proposition 4.9 imply that only the Oth
column and the 1st column in the spectral sequence F5? = H? (Sx, HY(05,Qp)) = HALI(H,Q,) are
nonzero. Therefore, the spectral sequence degenerates and gives

H:ts(Hv ngoét(BTCL‘_la QP)) = AQp (1‘1, T3, - 7I2n—1)®d ® H;ts(gKa Qp)
When j > 1, Theorem 3.2 implies that ngoét (B, Q,) = Q-1 (B2 )/ ker d @k C(—j). Thus in the spec-
tral sequence Eg)q = H(I:Jts(gK’ Hgts(ofﬁ ngoét(fégil’ Qp))) = Hgthrq(H’ ngoét (]égi17 QP))/ the term qu is
given by
qu = Hfts(9K7 Hgts(og’ Qj_l(ﬁ}l(_l)/ ker d®Kc(_j)))

= Hi(Sxc, HEW (05, 97 (B e d)B1cC ()

= HExy (916, O(=1) Brc HEL(0, 9 (B )/ Kerd).
Using the projection formula from Lemma 4.10, the second equality follows from the fact that O} only acts
on the differential forms, and the third equality follows from the fact that §x acts through the Tate twist.
By Theorem 4.6, we get F5? = 0 and H, (H, H’, ., (B~ ', Q,)) = 0 when j > 1.

P
Finally, inserting these computations into the spectral sequence

By? = Hiw(H, H], o (B Qp) = ey (1BE/H], Qp),
we get the isomorphisms as desired. O

Since H}((Sk,Q,) is already calculated in Lemma 4.5, Theorem 4.12 gives an explicit description of

p-adic pro-étale cohomology of the stack [LT, . /G,] in all degrees.

Remark 4.13. Following the same steps as in the proof of Theorem 4.12, one can also compute the {-adic
pro-étale cohomology of [,/ GL, (Ok)] by passing to the Lubin-Tate side, recovering the description
given in Theorem 4.4.

5. COHOMOLOGY OF THE ISOGENY STACKS

We now turn to the computation of pro-étale cohomology of the isogeny stack [H% !/ GL,,(K)], where
many of the auxiliary results from Section 4 are still helpful.

5.1. t-adic case. We will compute H?, ., ([H}'/ GL,(K)],Q;) directly from the Drinfeld side, where the
key step is to determine the continuous cohomology of GL,,(K) over Q,. The cohomology of GL,,(K) over
the trivial module over a ring R has been well-studied when R is equipped with the discrete topology. For
example, [Dat06, Corollaire 2.1.7] (see also [Orl05, Corollary 2]) gives

61) Hi(GL(K), F) = {R b0t

0 otherwise
if R is any characteristic 0 ring or R = Z/mZ for suitably chosen m, where R is equipped with the discrete
topology in both cases. However, as we pointed out in Section 3.2, the module Q, here arises from the ¢-adic
pro-étale cohomology of Drinfeld spaces, so it is endowed with a natural ¢-adic topology as justified by the
condensed formalism. Therefore, the result (5.1) above does not apply directly to our setting; nevertheless,
the following analogous statement still holds:

Lemma 5.1. Let Q; be the trivial 1-dimensional GL,, (K )-representation equipped with the {-adic topology. Then
Q¢ ifi=0,1

0  otherwise.

Hyo(GLn (K), Q) = {
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Proof. We first compute the group cohomology of SL,,(K) over Q,. Denote SL, (K) by G. Following no-
tations from [S597, §I1.1], we denote by X the Bruhat-Tits building of G, by X; (resp. X(;)) the set of
i-dimensional facets (resp. oriented facets) in X, by R; the finite set of G-orbit representatives in X;. For a
facet F € X, let P}, (resp. Pr)be the G-stabilizer (resp. pointwise G-stabilizer) of F and letep : P, — {+1}
be the orientation character as defined in [SS97, §I11.4], which is trivial when restricted to Pr C P}. By [S597,
Theorem I1.3.1] and [SS97, proof of Proposition 111.4.1], we have an exact sequence

0— @ c—IndIGD;EF—>~'—> @ C—IIldg;EF—)Z—)O
FeR,_1 FeRy
of smooth representations of G; see also [Fus22, eq. (4)]. Tensoring this with Q, then gives an exact resolu-
tion of the representation Q,:

€] el
(5.2) 0— @ T @ c-Indy ep — Q¢ — 0.
FeR, 1 FeRy
Applying the continuous cochain functor C*(G, —) to (5.2) then gives us a double complex. By Shapiro’s
lemma, the spectral sequence associated to such a double complex is given by

(53) @ cts :> Hct—:j (Ga Q@)
FER;

By [S597, §111.4], since our group G has anisotropic center, the stabilizer group P} is compact and Pp C PIJL
has finite index. Then [S597, §I1.1] further implies that for each facet /' we can find an exact sequence
1—-Ufp — PJr — Ip = 1withUr C Pr C PJr pro-p and I finite. Since €| p,, is trivial, the same argument
as in the proof of Lemma 4.3 implies that Cts(Pl,fﬂ, Q¢) = Q¢ when j = 0 and vanishes when j > 0. Thus
the spectral sequence (5.3) collapses to the Oth row with Ei° = @ rer, Qe But notice that (E7 0 dy) is
exactly the augmented cellular cochain complex of X with coefficient in Q,. Since X is contractible, we

have E° = Qg and E4° = 0 for i > 0. This implies H, (G, Q) = Q; when i = 0 and vanishes when i > 0.

Now consider the short exact sequence 1 — SL,,(K) — GL,,(K) et KX 1. Using its associated spec—

tral sequence and our computation of H (SLy (K), Q) above we get H (GL, (K), Q) = Hi (K™, Q).
Write K* = 72 x 0, then Lemma 4.3 further implies H, (K>, Q) & H}(Z,Q,), which is isomorphic to
Q¢ in degree 0 and 1 and vanishes in higher degrees. O

Theorem 5.2. We have isomorphisms

Q¢ ifr=0,2
proet([j{n 1/GL ( )]7@@)2 Q% l:fT:]_

0 otherwise.

Proof. Using the spectral sequence
Ey’ = Hiyo(GLn (K), Hp, o, (705, Q0)) = HylJee (905 / GLa (K], Qo)

proét

the theorem follows directly from Proposition 4.2 and Lemma 5.1. O

5.2. p-adic case. Same as in Section 4.2, carrying out computation directly from the Drinfeld side would
lead us to the hurdle of determining H(GL, (K), Sp,(Q,)*) for r in between 0 and n — 1. The represen-
tations Sp,.(Q,)* are Fréchet spaces over Q,, and we will see later in Section 6 that even computing such
continuous cohomologies in the easiest case when r = 0 requires some effort.

Thus we again switch to the Lubin-Tate side and compute H}, ¢, ([H '/ GL,(K)],Q,) through comput-
ing pmct([P’}(_l /G2],Q,), as suggested by Corollary 2.7. Let H be the group constructed in the proof of
Theorem 4.12. Then by construction of H, we have an isomorphism

(5.4) B2 /Gn] = [P/ H).
We first factorize the cohomology of [P}~/ H].
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Lemma 5.3. The p-adic pro-étale cohomology of the stack [P%~* /H] can be expressed as

H;roet([]Pm 1/H] QP) proet([]Pm I/SK] Qp) ® Cts(ogﬂ Qp)
Proof. We start by describing the cohomology of [P, ! /0%]. As the cohomology classes of P/, ! are hy-

perplanes, O} acts trivially on H}, (P!, Q,) thus the terms in the Hochschild-Serre spectral sequence
converging to proet([IP’”*l/OX] Qp) are given by E2’j = H!(05,Q,) ® Hémet (PL1 Q). Letn € ES’Q be
the hyperplane class. Since only the even rows in E3’ are nonzero, 7 is a permanent cycle. As the spectral
sequence is multiplicative and its differentials are derivations, d,(n) = 0 for all » > 2 implies d,.(n™) = 0 for

all > 2 and all powers ™. Since powers of 7 generate Hp s (P2, Q,), the spectral sequence degenerates

on the E2 page and glVES proet([Pgil/ogL @P) =H proet (Pn 1’ QP) @ cte(oga Qp)
Using such a tensor product decomposition, consider the spectral sequence corresponding to further
quotienting [P’é‘l /05 by Sk

(55) = cts 9K7 @ proet Pn_17QP) ® cts(OB’Qp)) H;j()Jet([Pg_l/H]va)a
a+b=j

where G acts on the factor H7, (P!, Q,) through Tate twist and acts on the factor H% (0}, Q,) through

conjugation. By Theorem 3.1 and Lemma 4.5, we see that £’ = 0 for i > 2. Thus (5.5) degenerates on the
Ey-page and gives H};  ([P¢~ '/H],Q,) = (P& 1/SK] Q)® CtS(OE, Q,)?%. By construction of the

group H, the conjugation action of §x on O} factors through the quotient 7, where 1 € Z acts on O o by
Ad(w). In [BSSW25, Proposition 3.8.1], it is shown that the conjugation action of D* on HZ (0}, Q,) is
trivial if D is defined over Q,, and the argument there naturally extends to the case when D is defined over
a finite extension K/Q,. Thus we have H} (0}, Q,)% = H} (0}, Q,), which gives the result. O

cts

proet

Theorem 5.4. Suppose K is a finite extension of Q, of degree d. There is an isomorphism of graded Q,-vector spaces

H;roet([P?“(_l/ng]v @P) = H, proet(]Pm 17 QP) ® AQp (1’1? L3y 7x2n—1)®d ® AQp (y)v

where |z;| =1, |y| = 1, and

Qp ifx=0
d+1 . -1
H};kroct (]P)Tll(ilv QP) = QS lf* ;
Q, if3 < < 2n— 1and * is odd
0 otherwise.

i 0 o~ i n—1
Proof. Recall from Section 2 that G;, = G, x Z. Since cohomology classes of P are hyperplanes, Z

acts trivially on Hp,

(]P’;i(_l, Qp). As the actions of Z and G,, on ]P’;i(_l are also commutative, the spectral se-

n—1 n—1 : : : N * n—1
quence for the quotient P — [P /G,,] is Z-equivariant. Thus Z also acts trivially on H}} . ([P'2" /G,
By direct computation, the continuous group cohomology of Z over the trivial module Q, is given by

H}(Z,Q,) = Ag,(y) with |y| = 1. This implies only the Oth and the 1st columns of the spectral sequence
EY = H. (Z, Hproet([IP”lﬁ(_1 /G, Qp)) = Hl’):fet([]P’"_l/ GY],Q,) could be nonzero. Thus it degenerates on

the E»-page and gives the factorization H{, . (P2 1/GY),Q,) = Hp oo ([P '/G,],Q,) ® Ag, (y). Using the
isomorphism in (5.4) together with Lemma 5.3 and Proposition 4.9, we get

H;roet([ﬂp?(_l/@n]? QP) = proet(Pn 17 @P) ® A@p (331, X3, 7x2n—1)

The computation of H (P!, Q) is immediate from Theorem 3.1 and Lemma 4.5. O

®d

Remark 5.5. If we try to recover Theorem 5.2 via passing to the Lubin-Tate side and computing the coho-
mology groups H . ( [IP’TIE(_1 /G?],Qp), the steps are much simpler than what we did here in the p-adic case
since all of the spectral sequences are readily degenerating.

Q).
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6. APPLICATION: GROUP COHOMOLOGY FOR GL2(Q,)

As we stated in Section 5.2, the problem of computing H (GL,(K), Sp,.(Q,)*) appears to be challeng-
ing. As we will later see in Proposition 6.2, even when r» = 0 (so that Sp,.(Q,)* = Q,) and K = Q,,
the groups H} (GL,(K), Q,) already differ significantly from the discrete case in (5.1) and the ¢-adic case
in Lemma 5.1. But now since Theorem 5.4 gives us a description of the p-adic pro-étale cohomology of
[/ GL,(K)], it is natural to ask whether it is possible to deduce some information about the continu-
ous cohomology groups Hi (GL, (K),Sp,(Qp)*) for 0 < r < n — 1 in return using the spectral sequence
©6.1) Eé’j = Héts(GLn(K)>ngoét(j{&glv(@p))

= Hi(GLu(K), Sp,(Q))") = Hyid (96 GLa ()L, Q).

For simplicity, we will focus on the case when K = Q,. We start with the case when r = 0, and Sp,(Q,)*
is nothing but the trivial representation of GL,,(Q,) over Q,. The following lemma is an immediate con-
sequence of a theorem of Casselman-Wigner generalizing Lazard’s comparison theorem between group
cohomology and Lie algebra cohomology.

Lemma 6.1. Let G be SL,,(Q,) or PGL,(Q,,) and let Q,, be the trivial 1-dimensional G-representation equipped
with the p-adic topology. Then we have

H:ts(G’ Qp) = AQP((E& Tsy: - 73727171)
as graded Qp-algebras where |x;| = i in the exterior algebra on the right-hand side.

Proof. First notice that G is the group of Q,-points of a connected semisimple group defined over Q, with
Lie G = sl,(Q,). Then by [CW74, Theorem 1], we have an isomorphism of cohomology rings H}, (G, Q) =
H{..(s1,(Qp), Qp), where the latter one is further isomorphic to Hf;,(sl,,(Q), Q) ® Q,. Now as SU(n) is a
compact form of SL,(R), the Lie algbera cohomology of sl,,(Q) is isomorphic to the rational de Rham
cohomology of SU(n). Thus we get Hf, (s[,(Q),Q) = H;p(SU(n)) = Ag(xs,zs, - ,x2n—1) Where the
degree of z; is 4. O

Now we compute the continuous group cohomology ring H (GL,(Q,), Q,).

Proposition 6.2. Let Q, be the trivial 1-dimensional GL,,(Q,)-representation equipped with the p-adic topology.
Then we have

Hc*ts(GLn(Qp)an) = AQP(I7ZJ7$3,$5, ce ,xzn—l)
as graded Qp-algebras where |x| = |y| = 1 and |x;| = i in the exterior algebra on the right-hand side.

Proof. We first compute the continuous cohomology of the center Q, of GL,(Q,). Consider the decompo-
sition Q¢ = p” x ZX. By Lemma 4.7, we know H} (Z),Q,) = Ag, (z) with |z| = 1. For the other part, we
have HS.(p*,Q,) = Q, and H} (p?,Q,) is isomorphic to the group of continuous homomorphisms from
Z to Q,, which is again Q,. As all higher cohomology groups vanish, we have H}(p”,Q,) = Ag, (y) with
ly| = 1. Thus by Kiinneth formula, we have H; (Q,Q,) = Ag,(z,y).

Next, since we have the short exact sequence

det

(6.2) 1 = SL,(Qp) — GLA(Qp) — Q; -1,
we want to access the cohomology ring of GL,,(Q,) using the Hochschild-Serre spectral sequence
(63) Ey? = Hiio(Q), Hio(SLa (@), Qp)) = HEY (GLn(Qp), @p)-

By Lemma 6.1 and our computation of Hy(Q, ,Q,) above, one immediately notices that EY = 0 when

i > 3. Since (6.2) splits, the differential maps d3” on the F,-page are also 0 for any j > 0. Thus (6.3)
degenerates on the F;-page and we get 1} (GL,(Q,), Q) = H (SL,(Qy), Qp) ® Hi(Qy, Qp)- O

The following lemma gives a factorization of H ;roét([ﬂ{&gl/ GL,(Q,)], Qp) that we will need later.
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Lemma 6.3. The p-adic pro-étale cohomology of the stack [H”fl / GL,,(Qy)] can be expressed as

H;)kroet [:}C(a 1/GL (QP>] QP) proet(w{(g I/PGL (QP)] Qp) ® cts( ;7(@?)'

Proof. Consider the short exact sequence 1 — Q; — GL,(Q,) — PGL,(Q,) — 1. From the definition of
J{&Zl, we see that Q; acts trivially on 9{&;1. Thus we have a commutative diagram of stacks:

BQy " [543,/ GL(Qy)] — (3G, !/ POLA(Q)]

H [ 2

%

BQS —2— BGL,(Q,) ———— BPGL,(Q,)

where each row of this diagram gives a fibration of stacks. Specifically, the Leray-Serre spectral sequence
corresponding to the fibration described by the first row gives

E;j = proet([j{a 1/PGL (Qp)]; Ry *Qp) = H;jo]et([}%;l/GLn(Qp)]an)

where R7i; . Q) is the Q,-local system associated to the cohomology of the fiber BQ)¥. Since the conjugation
action of PGL,(Q,) on Q) is trivial, the monodromy action is trivial and the local system is in fact constant.
Thus the spectral sequence above can be rewritten into

(6:4) Ey’ = Hyoe (3, POLA(Q)], He(Q) Q) = Hyloet (195, '/ GLa (Qp)], Q)

and we are left to show this spectral sequence degenerates on the Ey-page.
By Lemma 6.1 and Proposition 6.2 and dimension-counting, we see the Leray-Serre spectral sequence
associated to the second row of the diagram above degenerates. So the edge homomorphism

Hgtb( LW(QP)? QP) - Hgtb( ;7(@?)

is surjective for all j > 0. By commutativity of the diagram, we have 5 = i} o f}. Thus the edge homomor-
phism of the spectral sequence (6.4)

H;J)roet([}((nggl/GLn(Qp)]v@P) - EOJ C EO’J = Hgts( ;7Qp)
is surjective for all j > 0 and (6.4) degenerates on the second page. O

In the rest of this section, we restrict to the case when n = 2 and use Theorem 5.4 together with Propo-
sition 6.2 to deduce a description of H} (GL2(Q,), Sp;(Qp)*). Notice that when n = 2, the only Sp,.(Q,)*
appearing are for r = 0 and r = 1.

Lemma 6.4. The Hochschild-Serre spectral sequence

E;j = cts(PGL2 (Qp) proét (H(apa@p)) H;;Jct([}%p/ PGL; (Qp)]7 Qp)
degenerates on the Es-page.

Proof. By Proposition 4.11, only the first three rows of this spectral sequence are nonzero. By Lemma 6.1, we
have H} (PGL2(Q,), Qp) = Ag, (x3), and we also write H' for H’ (PGL2(Q;),Sp;(Qp)*). As many terms
on the F,-page are zero, almost all 5" are already stable with only two differentials we need to check more
carefully. The first one is the map d3* : H? — E3° = Q,. But by definition of the Steinberg representation
Sp,(Q,), there are no stable vectors in Sp, (Q,)* under the action of PGLy(Q,), and thus dy” is zero. The
second map we need to checkis dy” : H' — Ej* = Q2. By Proposition 4.11, we have Hy o (3, , Qp) = Q;
and the term Ej'' here arises from H2, (PGL»(Q,), Q%) = (H2,(PGL2(Q,), Q,))%. Now the stability of E5°
implies that every element of H3 (PGL2(Q,), Qp) is a permanent cycle for the spectral sequence. So the
elements in E5'" are also permanent cycles, and dj” is zero. O
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Theorem 6.5. For the dual Steinberg representation Sp,(Qy)* of GL2(Q,), we have

H:ts(PGL2(Qp)7 Spl(Qp)*) = H:ts(PGL2(Qp)7Qp)[_1]
and also

Heis (GLa(Qp), Sp1(Qp)") = Hey(GL2(Qy), Qp)[-1]-
Proof. Following notations from Lemma 6.4, we write H' for H{ ,(PGL2(Q,), Sp; (Q,)*) and also denote the
dimension of H* (as a Q,-vector space) by h*. Then using Theorem 5.4 and Lemma 6.3, we get an explicit
description of the dimension of the p-adic pro-étale cohomology group of [ﬂ{ép / PGL2(Q,)] in all degrees.
The degeneration of the spectral sequence in Lemma 6.4 then allows us to determine the dimensions of H*,
yielding
=0, ht=1, K2=0, BR3=0, h*=1,

and h* = 0 for i > 5. Comparing this with the description of the cohomology ring of PGL2(Q,) over the
trivial representation Q, given by Lemma 6.1 gives the claimed shifting.

For the case of GL;(Q,), we first denote by &' the dimension of the i-th continuous cohomology group
of GL2(Q,) over Sp;(Q,)*. Then consider the spectral sequence

Ey) = H.(PGL2(Qy), H (Q),Spy(Qp)")) = H4Y (GLa(Qy), Sy (Qy)7).

Since the center of GL1(Q,) acts trivially on Sp, (Q,)* by definition, this spectral sequence can be written as
(65) By’ = His(PGL2(Qp), Has(Q; Qp) © Sp1(Qp)") = Her (GL2(Qp), Sp1(Qp))-

Proposition 6.2, together with our computation of the PGLy(Q,) case above, gives all the terms E3”7. Specif-
ically, only the first three entries of the first and the fourth columns of this spectral sequence are nonzero.
Therefore, all of the differential maps on the Ej-page are zero except possibly dy? : E;® — E3°. By
direct computation, both E* and E;" are one-dimensional. Thus if d3” is nonzero, we would have
E}° = EX0 = 0, which further gives h* = 0. But this is impossible as we already have h* = 1. There-
fore, the spectral sequence (6.5) degenerates on the E3-page which then gives

=0, h'=1, R*=2 RB*=1, RK'=1, RB*=2, #®=1,

and hi = 0 fori > 7. Comparing this with Proposition 6.2 finishes the proof. O

When n > 2, one cannot deduce descriptions of H (GL,(Q)),Sp,(Q,)*) in the same way as when
n = 2: on one hand there would be too many r we need to deal with simultaneously; on the other hand, we
also do not know whether the spectral sequence (6.1) degenerates on the E»-page.

Remark 6.6. Nevertheless, Theorem 6.5 still offers a plausible indication for the case of general n, suggesting
that H (GL,(Q,), Sp,.(Q,)*) might be given by a degree-r shift of the cohomology ring H.(GL,,(Q,), Q,).
Indeed, under the supposition that such a "shifting" holds, if we further assume (6.1) degenerates on
the F»-page, then inserting these cohomology groups into (6.1) reproduces the cohomology groups of
[9—(&;1 / GL,,(Q,)] given in Theorem 5.4.

Remark 6.7. Another reason we find such a speculation of "shifting" reasonable is its similarity to the case
of continuous cohomology of GL,,(Q,) with respect to duals of generalized Steinberg representations over
C. From [BWOO, Proposition X.4.7] and taking into consideration the center of GL,,(Q,), one could deduce

{(C fi=rr+1

Héts(GLn(@P)’Spr((C)*)g 0 otherwise

In other words, the cohomology ring H (GL,(Q,), Sp,.(C)*) is exactly a degree-r shift of H (GL,(Q,),C).

In the following section, we will prove that such a speculation is indeed true, employing the language
of condensed math from [CS19] and also the framework of solid representations recently developed by
Rodrigues Jacinto-Rodriguez Camargo in [RJRC22] and [RJRC25].
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7. GENERALIZATION TO GL,(Q,)
Our goal of this section is to generalize Theorem 6.5 to GL,,(Q,). Specifically, we will show:

Theorem 7.1. For 0 < r < n — 1, we have an isomorphism of graded Q,-vector spaces
Hc*ts(GLn(Qp)v Sp7(Qp)*) = A@p (:L" Y, T3,T5, " 7x2n—1)[_r]7

where |z| = |y| = 1 and |x;| = i in the exterior algebra on the right-hand side.

For a discrete ring R, the cohomology groups H}, (GL,,(Q,), Sp,(R)*) are well-understood if R has char-
acteristic 0 or R = Z/mZ for suitably chosen m by the work of [Orl05] and [Dat06]. For such a ring R, [Orl05,
Corollary 2] and [Dat06, Corollaire 2.1.7] give a description of the extension groups

(7.1) Extg(Spr(R), Spy(R))
for any reductive p-adic Lie group G and any subsets I, J of simple roots of G. One can then compute
H(GL,(Qp), Sp,(R)*) by realizing them as Ext¢y, (g, (Sp, (1), Spo(R)).

In an attempt to use such a strategy to compute the cohomology of GL,,(Q,) over Sp,.(Q,)*, one imme-
diately encounters the following problem: the ring R and also the representations Sp;(R) in [Orl05] and
[Dat06] are equipped with the discrete topology, and the Ext-groups in (7.1) are computed in the abelian
category of smooth G-representations with the discrete topology; on the other hand, the representations
Sp,.(Q,) are equipped with the p-adic topology, but the category of smooth G-representations over topo-
logical abelian groups is not an abelian category. Thus it no longer makes sense to talk about Ext-groups in
such a category.

To salvage this, we find the theory of solid representations developed in [RJRC22] and [RJRC25] perfect
for our purpose as it provides us some abelian categories which contain representations like Sp,.(Q,). This
allows us to study Ext-groups between generalized Steinberg representations of GL,,(Q,) over Q, using
strategies analogous to [Orl05] and [Dat06]. Specifically, the key ideas follow closely from those appeared
in [Orl05].

For the rest of this section, let G = GL,,(Q,) and also let K = Q,,. Following the notations' of [RJRC25],
we let Rep g (G) be the category of continuous G-representations over solid K -vector spaces and let Repi (G)
be its subcategory of smooth G-representations. Both of these are abelian categories and thus have enough
injectives (upon fixing the cardinal x), see e.g. [Bos23, Remark 2.11]. The category Repy (G) also has
enough projectives. We denote by Hom | the Hom-functor of Rep_ (G) and we let Ext () denote its

derived functors. For V € Repg  (G), we denote its smooth vectors by V*° and its smooth dual (V*)> by V.

Lemma 7.2. For any I C A and parabolic subgroup P; C G, the representations Indgl 1,Sp;(Qp), Sp;(Q,)* are
all objects of Rep g (G).

Proof. The representations Indgl 1,Sp;(Qp),Sp;(Qp)* are all complete locally convex G-representations
over Q. The lemma then follows from [RJRC22, Proposition 3.7]. O

Lemma 7.3. The functor
()% : Repg, (G) = Repi,(G)
Vis V2= lim VY
it
compact open

preserves injective resolutions.

Proof. For V € Repg (G) and H < G compact open, its clear that the functor V VH is exact. As
Rep, (G) is abelian, filtered colimits of exact functors remain exact, which implies exactness of (—)>. As

both categories are abelian and have enough injectives, we deduce from [Stacks25, Tag 015Z] that (—)>
preserves injective resolutions. g

LUnlike in [RJRC25], we will not use the derived language.
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Proposition 7.4. For U € Repy (G) and V € Repy (G), we have Exté(m (W, V) = Ex‘ufKD (c](W, V*°) for any
i > 0. Specifically, if V is a complete locally convex representation of G over K, then H., (G, V) = H., (G, V™)
forany i > 0.

Proof. Take an injective resolution 0 — V — J*® of V in Repg, (G) and also consider the injective resolution
0 — V*° — (J°)> of V*° in Repy, (G) given by Lemma 7.3. As U is smooth, we have f(U) C W for any
continuous G-homomorphism f : U — W. This implies Hom g 1¢(U,J*) = Homg 6 (U, (9°)°°) and the
first assertion follows. For V' a complete locally convex G-representation, V> is also complete and locally
convex. The isomorphism H}, (G, V) = H’, (G, V) then follows from [RJRC22, Lemma 5.2] and the first
statement. O

Lemma 7.5. Given U,V € Repk (G), if V is further admissible, then
Extenia) (W, V) 2 Extie ) (V, )
forany i > 0.

Proof. The classical case of such an isomorphism appeared in [Orl05, Lemma 6], and we follow the same
strategy here. As Repy (G) is an abelian category with enough injectives and projectives, we can take a

projective resolution 0 <~ U < P* in Repg, (G) and its smooth dual gives an injective resolution of U. By
[Vig96, Proposition 1.4.13], we have Homy, el (P, V) = Hom rola(V, iﬁl), which implies ExtiKD a1 (U V) =
Ext%D (1(V,U). As'Vis admissible, we have V = 'V by [Cas95, Proposition 2.1.10] and the claim follows. [

Lemma 7.6. For any parabolic subgroup Py C G associated to I ¢ A, we have Ext_ (Ind% 1,1)=0.

Proof. Let ¢ p, denote the modulus character of the parabolic subgroup P;. Then by [Vig96, Chapitre I, 5.11]

we have Indgl 1= Inng dp,. Thus we get

Extjeo(Ind$, 1,1) = Exty (L, IndF, 1)
= Extj (¢)(L, Ind%, op,)
= EXt}D [Pr] (L, (Sﬁ)

where we used Lemma 7.5 in the first isomorphism and the third isomorphism comes from Shapiro’s
lemma. Since I is a proper subset of A, the modulus character dp, is not the trivial character and [BW00,
Proposition XI.1.9] implies there does not exist any extension of 1 by dp,. This gives Ext}_5)(1,0p,) =0,
as desired. 0

Proof of Theorem 7.1. As the representations Sp,.(Q,)* are complete and locally convex, Proposition 7.4 and
Lemma 7.5 together give H(GLn(Qp), Sp,(Qp)*) = Exti6)(Sp.(Qp), 1). Since Exty (L, 1) is just
H} (GL,(Qp), Qp) which is isomorphic to Ag, (,y, x3, 25, - - - , T2n—1) by Proposition 6.2, it suffices to show
Exty 161 (SPr(Qp), 1) = Exty (L, 1)[—r].

Now recall that Sp,.(Q,) is defined as the generalized Steinberg representation of GL,,(Q,) associated to
the subset of simple roots {1,--- ,n—1—1r} C A. Let us denote the set {1,--- ,n —1—r} by I,. Then [SS91,
Proposition 13] (see also p.88 of loc. cit.) gives an acyclic resolution of Sp,.(Z)

0-Z— P Idf1---— P Indf 1 —Mmdf 1—Sp.(Z)—0
I,CICA I, CICA
|ANI[=1 I\ [=1
in the category of smooth GL,,(Q,)-representations with discrete topology. Tensoring this exact sequence
with Q, and condensing it, we get an acyclic resolution of Sp,.(Q,)

(7.2) 0-Q— P Mmdg1----— P Indf 1—Indf 1 Sp,.(Qy)—0

I.CICA I.CICA
|ANT|=1 [INI =1
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in the category Repf (G). Now apply the functor Hom(¢)(—, L) to (7.2) and pick an injective resolution
0 — 1 — J° in the category Rep%k,_ (G), we get a double complex of the form

: :

- — Homgpg( @ ndf 1,7") — Homg g @  df 1,57H) — .-

I,CICA I,CICA
[I\I.|=i [I\I.|=i+1
T T
- — Homg g € ndf, 1,%) — Homgg( € nd3 1,9) — -
I,CICA I,CICA
[I\I.|=i |I\I |=i+1
T T

The E;-page of the spectral sequence associated to such a double complex then gives

(7.3) Ey? = Ext o €D nd§, 1,1) = Extil? 1 (Sp,(Qp), 1).
I.CICA
JAVAES
By Lemma 7.6, the columns of (7.3) are all zero except the r-th column, which is Extj (1, 1). Thus we
get an isomorphism Extj16)(Sp,(Qp), L) = Exty (L, 1)[~7], and this finishes the proof. O
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